Densidade dos Gases

1. DENSIDADE ABSOLUTA (d)

É o quociente entre a massa e o volume.

$$d = \frac{m}{V} \text{ (qualquer estado físico)}$$

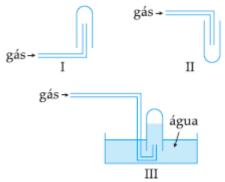
$$d = \frac{M}{22,4 \text{ L}} \text{ (gás nas CNTP)}$$

$$d = \frac{PM}{RT} \text{ (gás em qualquer condição de } T \text{ e } P\text{)}$$

2. DENSIDADE RELATIVA

Corresponde à relação entre as densidades absolutas de dois gases, quando medidos nas mesmas condições de temperatura e pressão.

$$\frac{d_A}{d_B} = \frac{M_A}{M_B} \text{ ou } d_{A,B} = \frac{M_A}{M_B}$$


Massa molecular (média) do ar atmosférico: ≃ 28,9 µ

$$d_{gás, ar} < 1$$
 (gás sobe)
 $d_{gás, ar} > 1$ (gás desce)

EXERCÍCIOS DE APLICAÇÃO

- 01 (FEI-SP) Um gás, que está inicialmente a uma pressão de 1 atm e temperatura de 273 K, sofre uma transformação de estado adquirindo uma pressão de 3 atm e temperatura de 546 K. Com relação à densidade inicial, a densidade final é:
- a) 1,5 vezes maior.
- b) 3 vezes maior.
- c) 2 vezes maior.
- d) 1,5 vezes maior.
- e) 3 vezes maior.
- **O2 (PUC-Campinas-SP)** Tanto em comemorações esportivas como na prática do balonismo como esporte, bexigas e balões dirigíveis são cheios com gases que apresentam determinadas propriedades. Dentre as substâncias gasosas abaixo:
- I. hélio: menos denso do que o ar e praticamente inerte;
- II. dióxido de carbono: mais denso do que o ar e incombustível;
- III. criptônio: praticamente inerte e mais denso do que o ar;
- IV. hidrogênio: combustível e menos denso do que o ar;
- V. monóxido de carbono: combustível e de densidade próxima à do ar;
- a mais segura para ser utilizada em balões e bexigas é:
- a) V.
- b) IV.
- c) III.
- d) II.
- e) I.

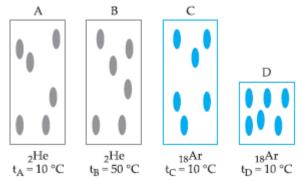
03 (Fuvest-SP) Deseja-se preparar e recolher os gases metano, amônia e cloro. As figuras I, II e III mostram dispositivos de recolhimento de gases em tubos de ensaio.

Considerando os dados da tabela abaixo:

	massa molar solubilid g/mol em águ			
metano	16	desprezível		
amônia	17	alta		
cloro	71	alta		
ar	29 (valor médio)	baixa		

escolha, dentre os dispositivos apresentados, os mais adequados para recolher, nas condições de ambiente, metano, amônia e cloro. Esses dispositivos são, respectivamente:

- a) I, II e III.
- b) III, I e II.
- c) II, III e I.
- d) II, I e III.
- e) III, II e I.


04 (Osec-SP) Determinado gás exerce pressão de 623 mmHg à temperatura de 227°C. Sua densidade vale 1,5 g/L. O mol desse gás, em gramas, é: Dado: $R = 62,3 \text{ mmHg.L.mol}^{-1}.K^{-1}$

- a) 34
- b) 75
- c) 41
- d) 116
- e) 15

05 (PUC-SP) A densidade de um gás perfeito irá quadruplicar quando:

- a) a pressão e a temperatura dobrarem.
- b) a pressão dobrar e a temperatura absoluta for reduzida à metade.
- c) a pressão e a temperatura absoluta forem reduzidas à metade.
- d) a pressão for reduzida à metade e a temperatura absoluta dobrar.
- e) o volume quadruplicar.

(UEL-PR) As figuras abaixo representam recipientes contendo gases considerados ideais. Os volumes de A, B e C são iguais; o volume de D é a metade do volume de C; todos os recipientes contêm o mesmo número de moléculas. Informações adicionais são dadas sob cada figura.

Com relação à densidade e à pressão dos gases contidos nos recipientes, é incorreto afirmar.

- a) A pressão do gás contido em C é maior do que a do gás contido em A.
- b) O argônio contido em D é o gás de maior densidade.
- c) O gás contido em C é mais denso do que o contido em A.
- d) A densidade do gás contido em A é igual à do gás contido em B.
- e) A pressão do gás contido em D é o dobro da pressão do gás contido em A.
- 07 **(Fuvest-SP)** A partir da equação dos gases ideais (P.V = n.R.T), deduza a fórmula que permite calcular a densidade (massa específica) de um gás ideal.

08 Calcule a densidade do gás nitrogênio, nas CNTP. Dado: N = 14.

09 Calcule a densidade do gás carbônico em relação ao gás hidrogênio. Dado: H = 1, C = 12, O = 16

- 10 (Unicamp-SP) Um balão meteorológico de cor escura, no instante de seu lançamento, contém 100 mols de gás hélio (He). Após ascender a uma altitude de 15 km, a pressão do gás reduziu a 100 mmHg e a temperatura, devido à irradiação solar, aumentou para 77°C. Calcule, nestas condições:
- a) o volume do balão meteorológico;
- b) a densidade do He em seu interior;

(Dados; $R = 62 \text{ mmHg} \cdot \text{L.mol}^{-1} \cdot \text{K}^{-1}$; massa molar do He = 4 g/mol).

EXERCÍCIOS PROPOSTOS

- 11 (FASP) Qual é o gás mais leve, depois do hidrogênio, que pode ser, por exemplo, usado em balões por ser não-inflamável ou utilizado para substituir o nitrogênio quando o ar precisa ser respirado a alta pressão?
- a) argônio.
- b) lítio.
- c) hélio.
- d) oxigênio.
- e) cloro.
- 12 (PUC-Campinas-SP) Comparando-se as densidades dos gases a seguir, nas CNPT, qual deles é o melhor para encher um balão que deve subir na atmosfera?

Considere que: Dados: H=1; C=12; N=14; O=16; densidade do ar = 1,29 g/L (CNPT)

- a) CO₂
- b) O₃
- c) NO₂
- d) O₂
- e) CH₄
- 13 Dentre os gases seguintes: CO, N_2 , O_2 , He, H_2 , CH_4 , CO_2 , NH_3 , quais podem ser usados em balões que sobem em presença do ar?

Dados: H = 1; He = 4; C = 12; N = 14; O = 16, massa molar aparente do ar = 28,9 g/mol.

- 14 (Fatec-SP) Uma certa massa de gás pode ser aquecida sob pressão constante ou sob volume constante. Pergunta-se: como irá variar a densidade do gás, respectivamente, em cada uma destas formas de aquecimento?
- a) Diminui não varia
- b) Diminui diminui
- c) Não varia aumenta
- d) Aumenta diminui
- e) Aumenta não varia

15 **(PUC-RS)** Uma das alternativas atuais para a diminuição do aquecimento global consiste no sequestro de carbono do ambiente, com vistas a reduzir a quantidade de dióxido de carbono produzido principalmente pela combustão dos motores dos veículos automotivos e das indústrias.

Dados: $C = 12 \text{ g.mol}^{-1}$; $O = 16 \text{ g.mo}^{-1}$; $M(\text{média do ar}) = 28.8 \text{ g.mol}^{-1}$.

Em relação ao dióxido de carbono, é correto afirmar que:

- a) é um dos reagentes da queima de compostos orgânicos.
- b) é mais denso do que o ar, que é constituído, essencialmente, dos gases nitrogênio e oxigênio.
- c) é um dos produtos da fotossíntese.
- d) tem massa molar igual a 28,0 gramas.
- e) forma solução alcalina ao reagir com a água.
- **16 (FUVEST-SP)** Uma balança de dois pratos, tendo em cada prato um frasco aberto ao ar, foi equilibrada nas condições-ambiente de pressão e temperatura. Em seguida, o ar atmosférico de um dos frascos foi substituído, totalmente, por outro gás. Com isso, a balança se desequilibrou, pendendo para o lado em que foi feita a substituição.
- a) Dê a equação da densidade de um gás (ou mistura gasosa), em função de sua massa molar (ou massa molar média).
- b) Dentre os gases da tabela, quais os que, não sendo tóxicos nem irritantes, podem substituir o ar atmosférico para que ocorra o que foi descrito? Justifique.

Gás	H ₂	He	NH ₃	СО	аг	02	CO ₂	NO ₂	SO ₂
M/g mol ⁻¹	2	4	17	28	29	32	44	46	64

Equação dos gases ideais: P.V = n.R.T

P = pressão

V = volume

n = quantidade de gás

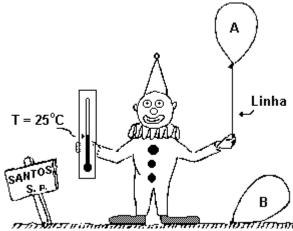
R = constante dos gases

T = temperatura

M = massa molar (ou massa molar média)

- 17 (UNICAMP-SP) As frutas são produtos agrícolas de grande importância comercial e nutricional. Em sua comercialização, podem ocorrer problemas de transporte, de conservação e de consumo. Para evitar danos de armazenamento e transporte, elas são colhidas ainda verdes. Sendo, neste estágio, impróprias para o consumo. Por dádiva da natureza, algumas dessas frutas amadurecem mesmo após a colheita. Esse processo pode ser controlado artificialmente. Essas frutas a que se faz alusão, quando colocadas em um recinto fechado, e tratadas com etileno ou acetileno gasosos, têm seu processo de amadurecimento acelerado. Esse fato é conhecido desde 1940, quando se descobriu que a liberação de gás etileno pelas frutas cítricas é essencial para o seu amadurecimento.
- a) Em vista dessas informações, que procedimento muito simples você poderia utilizar em sua casa para acelerar o amadurecimento de frutas cítricas? Descreva resumidamente o procedimento.
- b) Dispondo-se de carbeto de cálcio, é possível utilizá-lo para acelerar o amadurecimento de frutas. Justifique esta afirmação com uma equação química.
- c) Os dois gases apresentados no texto, sob mesma condição de temperatura e pressão, têm densidades muito próximas, mas um deles é mais denso. Qual é o mais denso? Justifique sua resposta.

18 (FATEC-SP) Considere o texto a seguir:


Cavendish ficou intrigado pelo gás que era produzido quando certos ácidos reagiam com metais. [...] Descobriu que esse novo gás tinha uma densidade de apenas 1/14 da do ar. Observou também que, quando uma chama era introduzida numa mistura desse gás com ar, o gás pegava fogo. Por isso chamou-o de "ar inflamável dos metais". [...] Cavendish pensou que o ar inflamável vinha de fato dos metais, não do ácido. Como a maioria dos químicos, seus contemporâneos, ele também aceitava a teoria do flogístico, acreditando que os metais eram uma combinação de cinza metálica e flogístico. Isso, juntamente com a leveza e inflamabilidade excepcionais do "ar inflamável", o levou à conclusão sensacional de que havia consequido isolar o flogístico.

(Paul Strathern, "O sonho de Mendeleiev")

As informações contidas no texto permitem concluir que o gás observado por Cavendish era o:

- a) O₂
- b) N₂
- c) H₂
- d) CO₂
- e) CH₄
- 19 (UFRJ-RJ) Um brinquedo que se tornou popular no Rio de Janeiro é um balão preto confeccionado com um saco de polietileno bem fino. A brincadeira consiste em encher parcialmente o balão com ar atmosférico (massa molar igual a 28,8 g/mol), fechá-lo e deixá-lo ao Sol para que o ar em seu interior se aqueça. Dessa forma, o ar se expande, o balão infla e começa a voar quando sua densidade fica menor do que a do ar atmosférico.
- a) Deseja-se substituir o ar no interior do balão por um gás formado por uma substância simples que, nas condições de temperatura e pressão do ar atmosférico, faça o balão voar.
- Desprezando a massa do filme de polietileno que constitui o balão, identifique os quatro elementos da tabela periódica que poderiam ser usados para tal fim.
- (Obs.: utilize uma tabela periódica).
- b) Considere que o ar no interior do balão se comporte como gás ideal, que sua pressão seja igual à atmosférica e que a massa do saco de polietileno usado para confeccionar o balão seja igual a 12 g. Determine a temperatura do ar, em graus Celsius (°C), no interior do balão no momento em que seu volume atinge 250 L e sua densidade se iguala à do ar atmosférico (1,2 g/L).

20 (FUVEST-SP)

Ao nível do mar e a 25°C: volume molar de gás=25 L/mol densidade do ar atmosférico=1,2 g/L (Dados: H = 1, C = 12, N = 14, O = 16 e Ar = 40)

As bexigas A e B podem conter, respectivamente:

- a) argônio e dióxido de carbono.
- b) dióxido de carbono e amônia.
- c) amônia e metano.
- d) metano e amônia.
- e) metano e argônio.
- 21 (ITA-SP) Considere as duas amostras seguintes, ambas puras e a 25°C e 1atm:
- $P \rightarrow 1$ litro de propano (g)
- $B \rightarrow 1$ litro de butano (g)

Em relação a estas duas amostras são feitas as afirmações seguintes:

- I. P é menos densa que B.
- II. A massa de carbono B é maior que em P.
- III. O volume de oxigênio consumido na queima completa de B é maior que aquele consumido na queima completa de P.
- IV. O calor liberado na queima completa de B é maior que aquele liberado na queima completa de P.
- V. B contém um número total de átomos maior que P.
- VI. B e P são mais densas que o ar na mesma pressão e temperatura.

Das afirmações anteriores são CORRETAS:

- a) Todas.
- b) Nenhuma.
- c) apenas I, II e III.
- d) Apenas I, III e V.
- e) Apenas II, IV e VI.

- 22 (UFPE-PE) Um balão cheio com ar quente sobe a grandes altitudes porque:
- a) as moléculas do ar quente são menores do que as moléculas do ar na temperatura ambiente;
- b) dentro do balão há menos moléculas de ar por unidade de volume;
- c) as moléculas do ar quente são maiores do que a moléculas do ar na temperatura ambiente;
- d) as moléculas do ar quando aquecidas são rompidas, formando átomos mais leves e diminuindo a densidade do ar:
- e) as moléculas do ar quando aquecidas formam agregados, aumentando o espaço vazio entre elas.

23 Leia a texto a seguir:

A **massa molar aparente** do ar pode ser calculada pela média aritmética ponderada das massas moleculares dos gases componentes.

Admitindo que 80% das moléculas do ar sejam de N_2 e que 20% sejam O_2 , determine a massa molecular aparente da mistura.

(Dadas as massas atômicas: N=14, O=16)

- 24 Sabe-se que dirigíveis e balões de propaganda são preenchidos com gás hélio. Costuma-se dizer que o hélio é mais "leve" que o ar. Com o resultado do exercício anterior e sabendo que a massa atômica do hélio é 4u, determine, nas mesmas condições de pressão e temperatura:
- a) a densidade relativa do gás hélio em relação ao ar.
- b) quantas vezes a densidade do ar é maior que a do gás hélio.

25 Ao nível do mar, qual a massa de 1,0L de ar a 27°C? Para os cálculos, utilize a massa molecular aparente do ar.

- 26 Em balonismo, o ar é aquecido com queimadores de gás propano. Sabe-se que isso torna o ar menos denso e provoca a subida do balão. Admita que um aquecimento ao nível do mar elevou a temperatura do ar para 127°C e que a pressão manteve-se praticamente igual a 1,0 atm. Nessas condições:
- a) determine a densidade do ar dentro do balão.
- b) utilize o resultado do exercício anterior e compare as densidades do ar a 27°C e a 127°C.

- 27 A densidade do gás metano em relação à densidade do gás propano nas mesmas condições de pressão e temperatura é: (Dados: H=1, C=12)
- a) 0,4
- b) 0,36
- c) 0,52
- d) 0,58
- e) 0,42
- 28 A densidade absoluta do gás nitrogênio a 0°C e 1 atm é, em g/L: (Dado: N=14)
- a) 3,45
- b) 2,45
- c) 4,45
- d) 2,75
- e) 1,25
- 29 Quanto aos gases é correto afirmar:
- (01) O ar quente é menos denso que o ar frio.
- (02) O gás hidrogênio é o mais abundante no ar.
- (04) Os dois gases presentes em maior quantidade no ar são N_2 e O_2 .
- (08) O gás hidrogênio é mais denso que o ar.
- (16) A massa molar média do ar é 28,8 g/mol.

Soma ()

- 30 **(FEI-SP)** A densidade absoluta do gás sulfídrico (H₂S) aumentará quando:
- a) a pressão diminuir.
- b) a temperatura diminuir.
- c) a temperatura aumentar.
- d) a variação de pressão não afetar a densidade absoluta.
- e) a concentração de H₂S aumentar.
- 31 (FUVEST-SP) Nas condições normais de temperatura e pressão, a massa de 22,4 L do gás X_2 é igual a 28q.
- a) Calcular a densidade desse gás, nessas condições.
- b) Qual a massa atômica desse elemento? Justifique sua resposta.

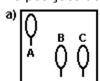
- **32 (UNICAMP-SP)** O gás hidrogênio é constituído por moléculas diatômicas, H_2 . Sua densidade, a 0° C e 1 atm de pressão, é 0,090 g/L. Cada átomo de hidrogênio é formado por 1 próton e por 1 elétron. Sabendo-se que o deutério é o isótopo de hidrogênio que contém 1próton, 1 elétron e 1 nêutron:
- a) Qual é a relação entre as massas dos átomos de hidrogênio e de deutério?
- b) Qual é a densidade do gás deutério nas mesmas condições?

- **(UNICAMP-SP)** Durante os dias quentes de verão, uma brincadeira interessante consiste em pegar um saco plástico, leve e de cor preta, encher 3/4 do seu volume, com ar, amarrar hermeticamente a sua boca, expondo-o, em seguida aos raios solares. O ar no interior do saco é aquecido, passando a ocupar todo o volume. Como consequência, o saco sobe na atmosfera como um balão.
- a) Considere a pressão atmosférica constante durante a brincadeira e considerando ainda que inicialmente o ar estava a 27°C, calcule a variação da temperatura do ar no interior do saco plástico, entre a situação inicial e a final, quando o gás ocupa todo o volume.
- b) Qual é a relação entre as densidades do ar no início e no instante em que todo o volume do saco é ocupado?

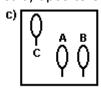
- **(UNESP-SP)** Um dos projetos elaborados para comemorar os duzentos anos da Revolução Francesa, consiste em mergulhar no rio Sena milhares de balões (bexigas) coloridos, cheios de gás e presos a pequenos sacos com um sal. Depois de certo tempo, esses balões devem emergir e subir colorindo o céu de Paris. A emersão e a subida dos balões, nesse projeto, dependem, principalmente, dos fatores:
- a) número de átomos presentes, na fórmula do sal, constituição do saco, densidade da água.
- b) massa do sal, densidade e tamanho do fio, permeabilidade, e coloração do balão.
- c) densidade do sal, índice de refração da água, condições de temperatura e pressão.
- d) estado de agregação do sal, densidade do saco, poluição e largura do rio.
- e) solubilidade do sal na água, permeabilidade do saco, densidade do gás.
- 35 **(UFPE-PE)** Dois cilindros de aço de mesmo volume contém massas iguais de oxigênio (massa molar 32g/mol) e nitrogênio (massa molar 28g/mol) gasosos, à mesma temperatura. Assinale a afirmativa falsa:
- a) A pressão no cilindro de nitrogênio é maior
- b) A velocidade média das moléculas de oxigênio é menor
- c) Existem mais moléculas no cilindro de nitrogênio
- d) A energia cinética média das moléculas de oxigênio é menor
- e) A densidade nos dois cilindros é a mesma
- **36 (FEI-SP)** As águas poluídas do rio Tietê liberam, entre outros poluentes, o gás sulfídrico (H₂S). Um dos maiores problemas causados por esse gás é o ataque corrosivo aos fios de cobre das instalações elétricas existentes junto a esse rio. O gás sulfídrico é mais denso do que o ar e, assim, concentra-se mais próximo ao solo. Considerando-se a massa molar média do ar igual a 28,9, a densidade do H₂S em relação ao ar, nas mesmas condições de temperatura e pressão, será aproximadamente:

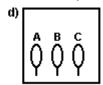
Dados: H = 1.0 u; S = 32.0 u

- a) 0,9
- b) 1,2
- c) 2,4
- d) 4,8
- e) 5,0


37 **(MACKENZIE-SP)** O gás hidrogênio foi utilizado no início do século em balões conhecidos como "Zeppelins". Atualmente, balões de publicidade e balões para crianças são enchidos com gás hélio. Relativamente ao gás hélio, é INCORRETO afirmar que:

Dados: massas molares (g/mol): H = 1; He = 4


- a) tem densidade maior que o ar atmosférico.
- b) sua massa molar é maior do que a do gás hidrogênio.
- c) é um gás não inflamável.
- d) tem fórmula molecular: He.
- e) é um gás mais denso do que o gás hidrogênio.
- **(UFG-GO)** O "hobby" do balonismo fez com que Charles e Gay-Lussac estudassem algumas das importantes propriedades dos gases. Considerando-se um balão, de paredes rígidas, não elásticas, com uma abertura inferior, por onde se faz o aquecimento do ar que ascende na atmosfera quando inflado com ar quente,
- () a pressão do gás aumenta com o aumento da temperatura.
- () a densidade do gás aumenta com o aumento da temperatura
-) o volume do balão aumenta com o aumento da temperatura.
- () o volume molar do gás aumenta com o aumento da temperatura.
- () o volume molar do gás aumenta com o aumento da temperatura.
- 39 **(PUCCAMP-SP)** A massa molar de um gás que possui densidade da ordem de 0,08 g/L a 27°C e 1 atm é, aproximadamente: (Dados: R=Constante universal dos gases 8×10⁻².atm.L.mol⁻¹.K⁻¹)
- a) 5 g/mol
- b) 4 g/mol
- c) 3 g/mol
- d) 2 g/mol
- e) 1 g/mol
- **40 (FATEC-SP)** Três balões A, B e C foram enchidos, respectivamente, com os gases nitrogênio, oxigênio e hidrogênio. Os três balões foram soltos numa sala cheia de ar, a 25°C e 1atm. São dadas as densidades, a 25°C e 1atm:


d
$$N_2 = 1,14 \text{ g L}^{-1}$$

d $O_2 = 1,31 \text{ g L}^{-1}$
d $H_2 = 0,0820 \text{ g L}^{-1}$
d ar = 1,10 g L⁻¹

As posições dos balões dentro da sala, após terem sido soltos, estão representadas em:

GABARITO

$$d_i = \frac{P \cdot M}{R \cdot T} \Longrightarrow d_i = \frac{1 \cdot M}{R \cdot 273}$$

$$d_f = \frac{P \cdot M}{R \cdot T} \Rightarrow d_f = \frac{3 \cdot M}{R \cdot 546}$$

$$\frac{d_f}{d_i} = \frac{3 \cdot M}{\cancel{K} \cdot 546} \Rightarrow d_f = \frac{3}{2} d_i$$

- 02- E
- 03-B
- 04- B

$$d = \frac{PM}{RT}$$
 : $M = \frac{dRT}{P} = \frac{1.5 \cdot 62.3 \cdot 500}{623} = 75 \text{ g/mol}$

- 05-B
- 06- A
- 07-
- P. V = n. R. T, onde: $n = \frac{m}{M}$, com isso ficamos com:

$$P \cdot V = \frac{m}{M} \cdot R \cdot T \rightarrow P \cdot M = \frac{m}{V} \cdot R \cdot T \rightarrow \frac{P \cdot M}{R \cdot T} = \frac{m}{V}$$

como : d =
$$\frac{m}{V}$$
, portanto teremos: d= $\frac{P \cdot M}{R \cdot T}$

08- Nas CNTP temos: P=1atm, T=0°C+273=273K e R=0,082

$$d_{N_2(CNTP)} = \frac{P \cdot M}{R \cdot T} = \frac{1 \cdot 28}{0,082 \cdot 273} = 1,25 \text{ g/L}$$

09-

$$d_{\text{CO}_2,\text{H}_2} = \frac{M_{\text{CO}_2}}{M_{\text{H}_2}} = \frac{44}{2} = 22$$

significado: O CO, possui massa 22 vezes maior do que o H₂, ou seja,

- o CO₂ é 22 vezes mais denso que o H₂
- 10- Dados: P=100mmHg; n=100mols; R=62; T=77°C+273=350K
- a) P.V = n . R . T \rightarrow 100 . V = 100 . 63 . 350 \rightarrow V = 21.700 L ou 2,17.10⁴ L

b)
$$d_{He} = \frac{P \cdot M}{R \cdot T} = \frac{100 \cdot 4}{62 \cdot 350} = 0.018 \text{ g/L}$$

- 11- C
- 12- E
- 13- Dadas as Massas Molares dos gases e g/mol: CO=28, $N_2=28$, $O_2=32$, He=4, $H_2=2$, $CH_4=16$, $CO_2=44$, $NH_3=17$. Desta forma, os gases mais leves que o ar, ou seja, com massa molar menor que 28,9g/mol fazem o balão subir, no entanto, as melhores opções são gases que não são inflamáveis nem tóxicos, segundo este critério, os gases escolhidos são N_2 e He.
- 14- A
- 15- B

P. V = n. R. T, onde: $n = \frac{m}{M}$, com isso ficamos com:

$$P \cdot V = \frac{m}{M} \cdot R \cdot T \rightarrow P \cdot M = \frac{m}{V} \cdot R \cdot T \rightarrow \frac{P \cdot M}{R \cdot T} = \frac{m}{V}$$

como : d =
$$\frac{m}{V}$$
, portanto teremos: d= $\frac{P \cdot M}{R \cdot T}$

- b) O ar pode ser substituído pelos gases O₂ e CO₂ que são mais densos e não são tóxicos. Assim a balança desequilibra pendendo para o lado em que foi feita a substituição.
- 17- a) Em casa se quisermos que as frutas verdes amadureçam rapidamente podemos embrulhá-las em um saco de plástico, papel ou jornal. Dessa maneira, impedimos que o etileno se disperse no ar e com isso ele acelera o amadurecimento.
- b) Sim, a reação do carbeto de cálcio com água produz acetileno. Observe:

$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

acetileno

c) C_2H_2 (acetileno): M = 26 g/mol.

 C_2H_4 (etileno): M = 28 g/mol.

De acordo com as fórmulas o etileno é o mais denso, pois apresenta maior massa molar.

$$d = PM/RT$$

 $d(C_2H_2) = 26(P/RT)$

$$d(C_2H_4) = 28(P/RT)$$

Logo 28(P/RT) > 26(P/RT), ou seja, $d(C_2H_4) > d(C_2H_2)$.

19- a) H; Ne; He; N.

23-

$$MM_{AR} = \frac{80 \cdot 28 + 20 \cdot 32}{100} = 28,8 \text{ u}$$

24-

a)
$$\frac{d_{He}}{d_{\Delta R}} = \frac{4}{28.8} = 0.14$$

b)
$$\frac{d_{AR}}{d_{Ha}} = \frac{28,8}{4} = 7,2$$

25-

$$d_{AR} = \frac{P \cdot M}{R \cdot T} = \frac{1 \cdot 28.8}{0,082 \cdot 300} = \frac{28.8}{24.6} = 1,17 \text{ g / L}$$

Com isso teremos: massa de 1 L de ar = 1,17g 26-

a)
$$d_{AR} = \frac{P \cdot M}{R \cdot T} = \frac{1 \cdot 28.8}{0.082 \cdot 400} = \frac{28.8}{32.8} = 0.9 \text{ g/L}$$

b)
$$\frac{d_{AR}(27^{\circ}C)}{d_{AR}(127^{\circ}C)} = \frac{1,17}{0,9} = 1,3$$

Significado: o ar a 27°C é 1,3 mais denso que o ar a 127°C.

31-

a)
$$d_{X_2(CNTP)} = \frac{M_{X_2}}{22,4} = \frac{28}{22,4} = 1,25 \text{ g/L}$$

- b) Como a massa molar de X_2 é 28g/mol, com isso, teremos que a massa atômica de X é 14u.
- 32- a) 1/2
- b) 0,180 g/L
- 33- a) $\Delta t = 100 \text{ K}$
- b) $d_1/d_2 = 4 / 3$ ou $d_1 = 4/3 d_2$
- 34- E
- 35- D
- 36- B
- 37- A
- 38- F V F V
- 39- D
- 40- C