Energia de Ligação Nuclear
Dado um núcleo qualquer, a energia liberada quando da sua
formação a partir dos seus prótons e nêutrons separados de uma
distância infinita ou, o que dá no mesmo, a energia que deve ser
fornecida a esse núcleo para separar seus prótons e nêutrons de
uma distância infinita é o que se chama de energia de ligação de
tal núcleo.
Por outro lado, a relação E = mc2, que Einstein
demonstrou em 1905 e que já está verificada por um grande número
de experimentos, significa que se um dado sistema ganha uma
certa quantidade de energia E, sua massa aumenta de uma
quantidade dada por E / c2, e inversamente, se um
dado sistema perde uma certa quantidade de energia E, sua massa
fica diminuída de uma quantidade dada por E / c2.
Aqui, c representa o módulo da velocidade da luz no vácuo.
Então, sendo E a energia de ligação de um núcleo com Z
prótons e ( A - Z
) nêutrons, de massa M(Z,A), pode-se escrever:
Zm(p) + ( A
-
Z )m(n) = M(Z,A) + E / c2
onde m(p) e m(n) são, respectivamente, as massas do próton e do
nêutron. Daí, a energia de ligação fica:
E = [ Zm(p) + ( A -
Z ) m(n) -
M(Z,A) ] c2
Assim, com as massas determinadas experimentalmente, a
energia de ligação de qualquer núcleo pode ser determinada.
Por exemplo,como:
m(p) = 1,0078 u
m(n) = 1,0087 u
m(α)
= 4,0026 u
uc2 = 931,4815 MeV
a energia de ligação da partícula
a,
ou seja, de um núcleo de hélio 4, fica:
E(α)
= [ 2 ( 1,0078 ) + 2 ( 1,0087 )
-
4,0026 ] ( 931,4815 MeV ) = 28,3170 MeV
Como outro exemplo, seja a energia de ligação de um núcleo
de lítio 6, cuja massa vale 6,0151 u:
E(Li) = [ 3 ( 1,0078 ) + 3 ( 1,0087 )
-
6,0151 ] ( 931,4815 MeV ) = 32,0430 MeV
Relativamente à dissociação completa, o núcleo de lítio 6 é
mais estável do que a partícula
a.
Contudo, as estruturas nucleares não se dissociam completamente
em seus núcleons individuais. No caso de um núcleo naturalmente
radioativo (núcleo pai), pode acontecer a dissociação espontânea
em um núcleo menor (núcleo filho) e uma partícula
α.
Por exemplo:
226Ra88
222Rn86 +
α
Como:
m(Ra) = 226,0254 u
m(Rn) = 222,0175 u
m(α)
= 4,0026 u
vem:
E(Ra) = [ 88 ( 1,0078 ) + ( 226
-
88 ) 1,0087 -
226,0254 ] 931,4815 MeV
= 1734,0460 MeV
E(Rn+α)
= [ 88 ( 1,0078 ) + ( 226 -
88 ) 1,0087 -
222,0175 -
4,0026 ] 931,4815 MeV
= 1738,9828 MeV
Como a energia de ligação do núcleo de rádio 266 é menor do
que a soma das energias de ligação do núcleo de radônio 222 e da
partícula
α,
a reação indicada acima é realmente espontânea.
Deve-se observar que:
E(Rn+α)
-
E(Ra) = [ -
222,0175 -
4,0026 + 226,0254 ] 931,4815 MeV = 4,9369 MeV
A massa do núcleo de rádio 226 é maior do que a soma das
massas do núcleo de radônio 222 e da partícula
α.
Levando em conta a relação E = mc2, isto significa,
em termos energéticos, que o sistema no estado inicial tem uma
energia maior do que no estado final, ou seja, o sistema passa
de um estado a outro de menor energia e, portanto, mais estável.
Por outro lado, em termos da energia de ligação, a
diferença E(Rn+α)
-
E(Ra), sendo positiva, indica que, para separar o sistema em
seus constituintes básicos, a energia necessária é maior no
estado final e, portanto, este é mais estável.
De qualquer modo, a reação indicada acima é espontânea.
Agora, seja a reação:
107Ag47
103Rh45 +
α
e sendo:
m(Ag) = 106,9041 u
m(Rh) = 102,9048 u
m(a)
= 4,0026 u
vem:
E(Rh+α)
-
E(Ag) = [ -
102,9048 -
4,0026 + 106,9041 ] 931,4815 MeV =
-
3,0739 MeV
A massa do núcleo de prata 107 é menor do que a soma das
massas do núcleo de ródio 103 e da partícula
a.
Levando em conta a relação E = mc2, isto significa,
em termos energéticos, que o sistema no estado inicial tem uma
energia menor do que no estado final, ou seja, o sistema
passaria de um estado a outro de maior energia e, portanto,
menos estável.
Por outro lado, em termos da energia de ligação, a
diferença E(Rh+α)
-
E(Ag), sendo negativa, indica que, para separar o sistema em
seus constituintes básicos, a energia necessária é menor no
estado final e, portanto, este seria menos estável.
Assim, de qualquer modo que se pense, a reação indicada não
é espontânea. O núcleo de prata 107 não pode decair
espontaneamente por emissão de partícula
α.
O que foi mostrado é que a radioatividade natural por
decaimento α
pode acontecer quando a massa do núcleo pai é maior que a soma
das massas do núcleo filho e da partícula
α.
O mesmo tipo de argumento pode ser feito para discutir a
emissão de elétrons ou pósitrons no decaimento
b.
Energia de Ligação por Núcleon
Uma indicação da estabilidade nuclear resultante das
interações coulombiana e nuclear forte é dada pelo gráfico da
energia de ligação por núcleon, E / A, em função do número de
núcleons, A. O gráfico de E / A contra A inclui tanto núcleos
estáveis quanto núcleos radioativos.

O núcleo com a menor energia de ligação por núcleon é o do
hidrogênio 2 (deutério) e o núcleo com a maior energia de
ligação por núcleon é o do ferro 56. Assim, esse gráfico tem um
máximo em A  56.
Os núcleons são mantidos juntos pela interação nuclear, de
caráter atrativo, apesar do efeito contrário da interação
coulombiana, de caráter repulsivo, entre os prótons.
Como E / A varia muito pouco com o aumento de A, para
núcleos não muito pequenos, cada núcleon deve interagir
atrativamente pela interação nuclear apenas com um certo número
de outros núcleons de sua vizinhança imediata, e esse número é
independente de A.
A diminuição lenta de E / A para A > 56 é conseqüência do
aumento do número de prótons com o aumento de A e do alcance
infinito da interação coulombiana, com cada próton interagindo
repulsivamente com todos os outros prótons do núcleo.
A diminuição é lenta, apesar do efeito depender do número
total de pares de prótons, porque a interação coulombiana é
cerca de 100 vezes menos intensa que a interação nuclear.
Por outro lado, para núcleos com A < 56, E / A diminui cada
vez mais rapidamente com a diminuição de A porque, então,
diminui cada vez mais rapidamente o número de núcleons na
vizinhança imediata de qualquer núcleon, onde a interação
nuclear é efetiva.
Assim, enquanto a interação nuclear contribui para a
estabilidade do núcleo, a interação coulombiana contribui para a
sua desestabilização.
Como o gráfico da energia de ligação por núcleon em função
do número de núcleons apresenta um máximo em A
 56, tanto processos de fusão de núcleos
leves quanto processos de fissão de núcleos pesados podem levar
a liberação de energia e podem, portanto, servir de fundamento
tanto para a construção de reatores de geração de energia quanto
para a construção de bombas com extremo poder de destruição.
Fusão Nuclear
Fusão nuclear é o processo de formação de um núcleo a
partir da colisão e posterior junção de dois núcleos menores.
Os núcleos que colidem devem ter, inicialmente, uma energia
cinética que lhes permita se aproximar contra a repulsão
coulombiana o suficiente para que a interação nuclear forte
passe a ser efetiva e mais importante.
Como a repulsão coulombiana é tanto mais importante quanto
maior a carga elétrica dos núcleos em colisão, a fusão nuclear
pode ser provocada com mais facilidade entre núcleos com número
pequeno de prótons.
De qualquer modo, a fusão nuclear com liberação de energia
só ocorre se o número de núcleons do núcleo resultante é menor
ou da ordem de 56.
A título de exemplo, seja a fusão de dois núcleos de
oxigênio 16 para formar um núcleo de enxofre 32:
16O + 16O
32S
Pela observação do gráfico E / A contra A tem-se
aproximadamente 7,8 MeV e 8,6 MeV, respectivamente, para a
energia de ligação por núcleon para os núcleos de oxigênio 16 e
de enxofre 32. Assim, as energias de ligação dos sistemas
inicial e final são:
E(O+O) = 2 ( 16 )( 7,8 MeV ) = 249,9 MeV
E(S) = 32 ( 8,6 MeV ) = 275,2 MeV
Ao passar do estado inicial para o final, o sistema sofre
uma variação de energia dada por:
ΔE
= E(S) -
E(O+O) = 25,6 MeV
Como
ΔE
> 0, a energia de ligação do núcleo resultante é maior do que a
soma das energias de ligação dos núcleos iniciais.
Em outras palavras, como uma energia de 275,2 MeV deve ser
fornecida ao sistema no estado final (núcleo de enxofre 32) para
separá-lo em núcleons infinitamente separados e uma energia de
249,6 MeV deve ser fornecida ao sistema no estado inicial (dois
núcleos de oxigênio 16) para separá-lo em núcleons infinitamente
separados, o sistema deve ter perdido (liberado) uma energia de
25,6 MeV.
Esse resultado se deve ao fato de as energias de ligação
por núcleon dos núcleos iniciais serem menores do que a energia
de ligação por núcleon do núcleo final, ou seja, a fusão nuclear
com liberação de energia só ocorre se o número de núcleons do
núcleo resultante é menor ou da ordem de 56, já que a curva E /
A contra A tem máximo em A 56.
Fissão Nuclear
Fissão nuclear é o processo de divisão de um núcleo em dois
núcleos menores, de tamanho comparável.
Os núcleos com um grande número de núcleons estão sujeitos
à fissão espontânea, com uma probabilidade muito pequena, e
sujeitos à fissão induzida por captura de nêutrons, com uma
probabilidade maior.
A título de exemplo, seja a reação de fissão de um núcleo
de urânio 235 em um núcleo de rubídio 97 e um núcleo de Césio
137:
n + 235U [ 236U
] 97Rb + 137Cs + 2n
Pela observação do gráfico E / A contra A tem-se
aproximadamente 7,7 MeV e 8,6 MeV e 8,2 MeV, respectivamente,
para os núcleos de urânio 236 e rubídio 97 e césio 137. Assim,
as energias de ligação dos sistemas inicial e final são:
E(U) = 236 ( 7,7 MeV ) = 1817,2 MeV
E(Rb+Cs+2n) = 97 ( 8,6 MeV ) + 137 ( 8,2 MeV ) + 2 ( 7,7
MeV ) = 1973,0 MeV
Ao passar do estado inicial para o final, o sistema sofre
uma variação de energia dada por:
DE
= E(Rb+Cs+2n) -
E(U) = 1973,0 MeV -
1817,2 MeV = 155,8 MeV
Como
ΔE
> 0, o sistema deve ter perdido (liberado) uma energia de 155,8
MeV.
Novamente, esse resultado se deve ao fato de a energia de
ligação por núcleon do núcleo inicial (o núcleo composto de
urânio 236) ser menor do que a soma das energias de ligação por
núcleon dos núcleos finais e dos dois nêutrons, ou seja, a
fissão nuclear com liberação de energia só ocorre se o número de
núcleons dos núcleos resultantes é maior ou da ordem de 56.
Este cálculo é aproximado e é o que se pode fazer a partir
do gráfico considerado. Na realidade, a energia total liberada
na reação é maior porque os núcleos resultantes são instáveis e
decaem, posteriormente, por emissão de elétrons, neutrinos e
raios g.
Física Nuclear
|