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Abstract—Dimers resulting from acetaldehyde—flavanol condensation were studied in an acidic hydroalccholic
medium (12% ethanol pH 3.2) in order to simulate the conditions of wine tannin-transformation during the
wine-ageing process. One of the dimers was isolated after hemisynthesis and studied by mass spectrometry,
NMR and molecular mechanics. Mass spectrometric analysis was in accordance with a dimeric structure with
a CH-CH; linkage. NMR showed the presence of a 6-8 (ethane-1,1-diyl)di( + )-catechin. The carbon atoms,
C-6 and C-8, involved in the linkage, have an asymmetric conformation, with the two catechols in an equarorial
position. © 1997 Elsevier Science Ltd

HO

Procyanidins extracted from grapes are responsible HO, o \
for the astringency of young red wines. They consist

of polymers of (+ )-catechin (1) and (— )-epicatechin » "\“R‘
(2) units (Fig. 1) with C-4-C-6 or C-4-C-8 linkages. OH Ra
During wine-ageing, acid-catalysed cleavage of inter-

INTRODUCTION
OH

L . 1 R1=H, R2=0OH
flavan bond is likely to occur [1]. At the same time, 2 R1=OH, R2=H
condensation reactions may also occur. Among these
reactions, a Baeyer acid-catalysed condensation, HO
involving acetaldehyde, has for a long time been pro- OH

posed [2, 3]. The occurrence of this reaction products
affects the taste [4] and colloidal stability [5] of wine.
It may also be important for the colour of red wine,
when anthocyanins are involved [6-9].

Recent mass spectroscopic studies have enabled the
identification of condensed products of acetaldehyde
with 1in a model solution {10-12] and in red wine [13].
Nevertheless, complete structural and conformational
analysis of such products require NMR measurements
and molecular mechanics calculations. In the present
work, we have studied the dimers obtained by the
reaction of 1 with acetaldehyde in a model solution
(cf. 3, Fig. 1).
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Fig. 1. Elemental structure of procyanidin monomer (cate-

chin and epicatechin) and one of the possible dimers resulting
¢ in— ] ion.

RESULTS AND DISCUSSION from catechin-acetaldehyde condensation

The HPLC chromatogram recorded at 280 nm for

: ) 3.2 is shown in Fig. 2. The first peak is catechin and
the solution after 10 days of reaction at 20° and pH

the four other ones (a—d) are potentially condensed
products of catechin with acetaldehyde. Mass spec-

* Author to whom correspondence should be addressed. trometric analysis revealed that they all h?d a M,
+On leave from EMBRAPA/CNPUYV, BP 115, Bento of 606 ((M+H]*, m/z = 607, [M—H]~, m/z = 605)
Goncalves, RS, Brazil. corresponding to two catechin units linked by an
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Fig. 2. HPLC (280 nm detection) showing the presence of reaction products of acetaldehyde—( + )-catechin reaction.

ethyl-bridge. Although these results are in accordance
with previous studies [10, 11], the number of dimer
peaks found was four and not three, due to separation
improvement; these peaks should correspond to the
four expected isomers (6-6, 8-8, 6-8 and 8-6) due to two
more reactive sites on 1 (6 and 8) and the asymmetric
carbon in the linkage. In order to study these com-
pounds by NMR it was necessary to purify them.
Unfortunately, conventional preparative HPLC was
unsuccessful, because the isomers underwent spon-
taneous cleavage and rearrangement [12, 14]. Conse-
quently, we used low pressure TSK HW 40-(s) gel
chromatography with MeOH as eluent. The first frac-
tion eluted after catechin contained only dimer a. It
was then possible to investigate its structure and con-
formation by mass spectrometry, NMR and molecular
mechanics.

In order to obtain mass spectral fragments, the volt-
age of the electrospray source was raised to 90 V
(absolute value). In addition to the [M +H]*, intense
fragment peaks corresponding with vinyl-catechin
and catechin were also observed (Fig. 3). These results
are in accordance with previous studies with LSI mass
spectrometry [5]. Another fragment was also
observed, especially in the negative mode, which cor-
responded with a retro-Diels—Alder (RDA) frag-
mentation of the dimer. Such fragmentations (RDA
and linkage-cleavage) are usually seen with flavonoid
compounds, such as procyanidins [15, 16].

All the NMR spectra recorded for this fraction
suggested that only one compound containing 1 units
was present in a dimeric form, as suggested by mass
spectrometry. First, it was important to demonstrate
the nature of the linkage existing between the two 1
units (I and II). It was established unambiguously that
a CH-CHj; bridge existed between the two A cycles
of the two 1 units; the 6 'H of the CH group was
characteristic of a proton located between two
deshielding groups, like the A cycle of the 1 moiety

(quadruplet at 5.18 ppm). On the contrary, the é '>C
of the CH group was not influenced by the presence
of such deshielding groups (24.7 ppm). Concerning
the CH; group, a doublet at 1.55 ppm was observable
in the proton spectrum, this resonance being coupled
to the CH group proton; the § *C was typical of an
alkyl group (18.7 ppm). Such results are in accordance
with previous studies on acetaldehyde—flavylium
coupling reactions [9].

Secondly, the question of isomerism was
addressed—is it the 6-6, one of the two 6-8 or the 8-8
isomer? Since we observe a pair of distinct chemical
shifts in the '"H as in the *C NMR spectra, and because
the only asymmetric isomer is the 6-8 one [4], we can
assign this isomer to 3. Nevertheless, other proof is
necessary. Consequently, all the 'H and "*C res-
onances were assigned using 2D techniques, such as
COSY, TOCSY, HMQC and HMBC, giving us the
ability to assign each catechin unit of the studied mol-
ecule (Table 1). The chemical shift of 2-H on the C-
ring of unit I is in good agreement with the one in
free catechin in the same solvent (6 4.57, [17]). This
indicates that the methine carbon of the ethyl bridge
is attached to C-6 of unit I [18] and, consequently, to
C-8 of unit II. Nevertheless, the presence of a cor-
relation peak in the HMBC experiment between the
proton of the CH group of the ethyl link and carbon
I 8a demonstrated that the ethyl bridge is attached to
C-8 of unit I. Indeed, the two quaternary carbons I
8a and II 8a are assigned without ambiguity by the
presence of *J['H-">C] correlation peaks between the
proton linked to C-2 of the C cycle and C-8a of the
two 1 units, I and II (Fig. 3). Finally, all the results
confirm the presence of a 6-8 (ethane-1,1-diyl)di(+)-
catechin dimer 3.

In order to study the spatial conformation of 3, we
used both NMR and molecular mechanics. The 'H
NMR spectrum enables the determination of *J['H-
'H] coupling constants (Table 2). These allow the
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Fig. 3. Mass spectra obtained in electrospray of dimer ‘a’ in negative (a) and positive (b) mode. Catechin (M —H]™: m/z

289, [IM+H]*: m/z = 291) and vinyl-catechin ((M —H]™: m/z = 315, [M+H]*: m/z = 317) fragments are present. Other

intense peaks are the RDA fragment ((M —H]~: m/z = 453) in the negative mode and a sodium adduct in the positive mode
((M+H]*: mjz = 629).

determination of the stercochemistry of the hetero- formation (B ring) on each 1 unit in solution [17]. The
cyclic pyran (C) ring; J,; coupling constants allowed measured constants implied an equatorial con-
discrimination between the equatorial or axial con- figuration for each catechol moiety (B ring). Inter-
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Table 1. 'H and "C assignments of compound 3

No. &'H(I) S'H (I sC()  s“can
CH 5.18 24.7

CH, 155 18.7

2 4.60 4.15 81.5 81.7
3 3.93 3.85 67.5 68.1
4 267,252 2.92;2.44 26.7 286
y P — — 100.1 100.5
5 — — 154.4 153.9
6 5.96 95.9 111.0
7 — 154.3 154.2
— 5.98 109.9 96.0
8a — — 153.2 153.0
[ 131.4 131.4
2 670 6.81 114.0 114.4
K — — 1449 145.0
VIS — 145.0 145.1
5 6.65 6.75 115.3 114.9
6 647 6.60 118.7 119.4

Table 2. '"H-'H *J coupling constants of compound 3 ex-
pressed in Hz

Values (Hz)
Unit | Unit IJ

Constants >/ Measured MM3*  Measured MM3*

as 6.6 9.0 83 9.0
ot 7.2 10.6 9.1 10.8
gt 5.3 5.7 5.7 5.4

14’ is the more deshielded proton.

estingly, the conformational search using MM2* or
MM3* gave very different results. A Monte-Carlo
conformational search was used, followed by a cluster
analysis with XCluster; 3000 steps were run within
a 15 kJ mol~' energy-range, resulting in 77 and 35
conformers (respectively, with MM2* and MM3*).
With MM2*, all low energy conformers were axial-
equatorial or bi-axial. The first bi-equatorial was
found 10.1 kJ mol~" higher in energy (no. 24). On the
contrary, with MM3*, the lowest energy conformer
was bi-equatorial. The first axial-equatorial con-
former found was no. 9 (AE = 4.7 kJ mol™"). No bi-
axial conformers were found among the lowest energy
part of the conformers.

As the experimental data clearly show that all com-
pounds are bi-equatorial, it seems that, as already
noticed in the polyphenol series [19], MM3* gives
better results than MM2*. The selected conformer
(Fig. 5) shows several interesting features. The struc-
ture is first stabilized by two hydrogen bonds between
the OH of 1-I (positions 5,7) with the phenolic OH
(position 7) and the pyranic oxygen of 1-I1. Secondly,
3the catechol moiety from 1-II interacts by means of
7= stacking with the benzo moiety of 1-I (distance of
the centres: 4.61 A). In this conformation, the proton
on the C-2 monomer 1-1 is in close proximity to the
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Fig. 4. Part of HMBC spectrum of compound 3. showing
the linkage involving C-6 and C-8 of the two 1 units.

Fig. 5. Conformer of compound 3 calculated using MM3*.
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Fig. 6. Part of NOESY spectrum of compound 3.

protons 2°,5" and 6’ of the catechol from 1-II. It was
interesting to check this using NOESY experiments.
The NOESY spectrum was obtained under qualitative
conditions (a long mixing-time, 800 ms, and a short
relaxation delay, 1.5 s). This experiment gave mainly
correlation peaks between the proximal protons of
ring B and C of the same 1 unit. Only one correlation
peak is of interest in terms of tertiary structural infor-
mation, a correlation peak between the proton 1 2 and
the proton 11 2’ (Fig. 6); this is in good agreement



Catechin-acetaldehyde condensation products

with the conformational analysis (d = 3.86 A, Fig. 5)
of dimer 3.

EXPERIMENTAL

Model solution and reagents. All chemicals were of
reagent grade. The model wine soln used was 12%
EtOH buffered on pH 3.2 (5 g 17! tartaric acid, N
NaOH for pH = 3.2). Acetaldehyde was mixed at —4°
and its concn estimated by assuming a density of 0.78.
Starting concs of catechin and acetaldehyde were 6.9
1072 mol 17" and 2 1072 mol 17!, respectively. The
temp. was 20

HPLC analysis. The column (25x0.46 cm) used
was a 5 um ODS2. The two solvents used were H,O
(A) and MeOH (B) both containing 5% HOAc. All
gradient steps were linear. The composition of solvent
A during the programme was:

59 74 75 88 112 120
100 95 62 56 48 45 0 100

Time (min) 0 1
A (vol %)

Mass spectrometry. MS was performed on a quad-
rupole instrument with an electrospray source, in posi-
tive and negative mode with a cone voltage of 25 V.
Conditions of sepn were identical to those in ref. [13].
The flow rate was reduced to 0.1 ml min~' using a
post-column split. For dimer analysis, the cone volt-
age was raised to 90 V in order to induce frag-
mentations.

NMR. 1D and 2D NMR expts were performed on
a spectrometer equipped with an inverse 5 mm broad-
band probe at 400 and 100 MHz for 'H and "“C,
respectively. All spectra were recorded using 3 mg
product dissolved in 0.6 ml of CD,0OD in a 5 mm tube.
'H and "*C chemical shifts are given in ppm relative
to TMS.

1D spectra. 'H spectra were recorded for both frs,
with a spectral-width of 3600 Hz and a pulse-width of
7 us (which corresponds to a nutation angle of 90°).
A scan number of 32 and an interpulse delay of 14.56
s (4.56 s for acquisition time and 10 s for relaxation
delay) were used. Processing, which was done without
any multiplication, was carried out with a 16 K data-
points. The proton-decoupled "*C spectra of each fT.
were recorded with a spectral-width of 18 000 Hz with
32 K data-points and a pulse-width of 9.5 us (90°
nutation angle). A scan number of 10000 and an
interpulse delay of 3.86 s (1.86 s for acquisition time
and 2 s for relaxation delay) were used. Exponential
weighting with a line-broadening factor of 1 Hz was
applied before Fourier transformation.

2D spectra. The '"H-'H shift correlated 2D COSY
spectra of both frs were obtained using the COSY-90
pulse sequence. For each tl increment, 16 scans were
accumulated. The F1 and F2 spectral-widths were
3600 Hz and the initial (t,.t,) matrices of 256 x 1024
real data-points were zero-filled to 1024 x 1024 to give
a final resolution of 3.6 Hz point. The '"H-'H total
correlation TOCSY spectra of both frs were obtained
using the basic phase-sensitive TOCSY sequence using
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MLEV-17 mixing-pulse. The acquisition and pro-
cessing parameters were the same as in the COSY
expt, except that a Qsine multiplication of x 3 was
used in the two dimensions. A 100 ms spin-lock mix-
ing-time was used for each expt. '"H-'"H NOESY expts
were recorded in the phase-sensitive mode with time-
proportional phase-incrementation according to the
pulse sequence of ref. [20]. The acquisition and pro-
cessing parameters were the same as in the COSY
expt, except that a Qsine multiplication of x2 was
used in the two dimensions, before the double Fourier
transformation. One bond "H-"°C chemical shift cor-
relation HMQC were obtained for both isorners
according to the Bax sequence [21], using B, gradient-
pulses for the selection of 'H coupled to "*C carbons.
For each t, increment, 64 scans were accumulated.
The F1 and F2 spectral-widths were 17 600 and 600
Hz, respectively. The initial (t,,t,) matrices of
256 x 1024 real data-points were zero-filled to
1024 x 1024, to give a final resolution of 68.8 Hz
point~' in the "’C dimension (F1) and 3.6 Hz point !
in the proton dimension (F2). 'H-detected het-
eronuclear multiple bond correlation spectra (HMBC)
were recorded using the pulse sequence of ref. [22],
involving a low-pass J-filter (3.8 ms) and a delay for
the long-range coupling (60 ms). As in the HMQC
expt, B, gradient-pulses were applied in order to select
'H coupled to "*C nuclei. Except for the sequence and
the delays mentioned, all parameters were the same as
in the HMQC expt.

Isolation of 6-8 (ethane-1.1-diyl) di(+ )-catechin.
MeCHO (4.5x 107" mol 17"y and 1 (8.6 x 10~* mol
1"y were placed in model soln at 35° in the darkness
for 6 hr. The resulting polymers were isolated using
LH-20 with H,O and MeOH. The MeOH fr., con-
taining phenolic compounds, was evapd and freeze-
dried. Polymers were then purified using TSK HW
40(s) gel with MeOH as eluant. The second fr. eluting
after 1 was collected and freeze-dried. Purity of this
product was estimated by HPLC as 95%. It was then
ready for MS and NMR analysis.
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